
EdPy lesson plans
Teaching guide and answer key

The EdPy Lesson Plans Set by Brenton O’Brien, Kat Kennewell and Dr Sarah Boyd is licensed under a Creative

Commons Attribution-ShareAlike 4.0 International License.

This project was developed by
Edison and is featured on
MakerHub with their permission.

For more makerspace projects,
visit makerhub.demco.com.

https://creativecommons.org/licenses/by-sa/4.0/
https://meetedison.com/
http://www.lovestem.com.au/
http://www.lovestem.com.au/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.hamiltonbuhl.com

Page 2

Contents

About the EdPy lesson plans .. 4

Using this guide .. 4

Creative Commons licence attribution details .. 5

Lesson plan overview ... 6

Lesson 1: Get familiar and set up ... 10

Lesson 1, part 1: Meet Edison (Worksheet 1.1) ... 12

Lesson 1, part 2: Barcode programming (Worksheet 1.2) .. 14

Lesson 1, part 3: Meet the EdPy app (Worksheet 1.3) ... 16

Lesson 1, part 4: Download a test program (Worksheet 1.4) ... 19

Lesson 2: Robot movement – driving ... 22

Lesson 2, program 1 – Drive the robot forward (Worksheet 2.1) 22

Lesson 2, program 2 – Drive the robot backwards (Worksheet 2.2) 22

Lesson 2, program 3 – Forward, then backwards (Worksheet 2.3) 23

Lesson 2, offline activity – Expressions in Python (Worksheet 2.4) 23

Lesson 2, program 4 – Keypad activated driving (Worksheet 2.5) 23

Lesson 3: Robot movement – turning ... 25

Lesson 3, program 1 – Turn right (Worksheet 3.1) ... 25

Lesson 3, program 2 – Turn left 180° (Worksheet 3.2) .. 25

Lesson 3, program 3 – Right turn, then left turn (Worksheet 3.3) 26

Lesson 3, program 4 – Mini maze (Worksheet 3.4) .. 26

Lesson 4: Get your robot into shape ... 28

Lesson 4, program 1– Drive in a square (Worksheet 4.1) .. 28

Lesson 4, program 2 – Use a loop to drive in a square (Worksheet 4.2) 28

Lesson 4, program 3 – Drive in a triangle and a hexagon (Worksheet 4.3).................... 29

Lesson 4, program 2 – Challenge! Drive in a circle (Worksheet 4.4) 29

Lesson 5: Play sounds and dance .. 30

Lesson 5, program 1– Play tones (Worksheet 5.1) .. 30

Lesson 5, program 2 – Make an alarm (Worksheet 5.2) .. 30

Lesson 5, program 3 – Play a tune (Worksheet 5.3) .. 31

Lesson 5, program 4 – Make your robot dance (Worksheet 5.4) 31

Lesson 5, program 5– Challenge! Dance to music (Worksheet 5.5) 31

Lesson 6: Clap sensing... 33

http://www.meetedison.com

Page 3

Lesson 6, program 1 – Flash the LED in response to a clap (Worksheet 6.1) 33

Lesson 6, program 2 – Drive in response to a clap (Worksheet 6.2) 33

Lesson 6, program 3 – Design your own function (Worksheet 6.3) 34

Lesson 7: Detect obstacles ... 35

Lesson 7, offline activity -- Infrared obstacle detection (Worksheet 7.1) 35

Lesson 7, program 1 – Detect an obstacle and stop (Worksheet 7.2) 35

Lesson 7, program 2 – Obstacle avoidance (Worksheet 7.3) ... 36

Lesson 7, program 3 – Detect an obstacle as an event (Worksheet 7.4) 36

Lesson 7, program 4 – Right and left obstacle detection (Worksheet 7.5) 37

Lesson 8: Line sensing and tracking ... 38

Lesson 8, offline activity – Line tracking sensor (Worksheet 8.1) 38

Lesson 8, program 1 – Drive until a black line (Worksheet 8.2) 39

Lesson 8, program 2 – Drive inside a border (Worksheet 8.3) 39

Lesson 8, program 3 – Follow a line (Worksheet 8.4) .. 40

Lesson 9: Respond to light ... 41

Lesson 9, program 1 – Light alarm (Worksheet 9.1) .. 41

Lesson 9, program 2 – Automatic lights (Worksheet 9.2) ... 41

Lesson 9, program 3 – Light following (Worksheet 9.3) ... 42

Lesson 10: A Vampire robot ... 43

Lesson 10, program 1 – Vampire robot (Worksheet 10.1) .. 43

Answer key ... 45

Answer key: lesson 1 ... 46

Answer key: lesson 2 ... 48

Answer key: lesson 3 ... 51

Answer key: lesson 4 ... 53

Answer key: lesson 5 ... 55

Answer key: lesson 6 ... 57

Answer key: lesson 7 ... 60

Answer key: lesson 8 ... 63

Answer key: lesson 9 ... 65

Answer key: lesson 10 ... 66

Student programming achievement chart ... 67

http://www.meetedison.com

Page 4

About the EdPy lesson plans
The EdPy lesson plans are a set of ten lessons designed to help you teach Python

programming using the Edison robots and the online programming application, EdPy,

available at www.edpyapp.com. The lessons here can be used as a first introduction to the

Python programming language or as a way for students to experience a hands-on

component to their growing Python knowledge.

While students of all ages thoroughly enjoy the programming process, problem solving,

and collaboration involved in programming using Edison robots, a basic understanding of

programming may be helpful before beginning these lesson plans. You may wish to use

one of the other Edison programming languages, detailed at www.meetedison.com/robot-

programming-software/ with your students before beginning EdPy.

This set of ten lessons begins with an introduction to the Edison robot and the EdPy

programming environment. Students will then begin to write simple programs and build up

to programs containing more complex Python programming structures. As some elements

of the lessons are progressive, you may find it easiest to work through these lessons

sequentially.

Each of the ten lessons contains multiple activities. On average, an activity can be

completed in a 45-minute class. Depending on your students’ ages, abilities and familiarity

with Edison robots and Python, you may require additional time or find you need to make

adjustments to the lessons. These lesson plans can also be used as a starting point to

develop your own customized lessons and activities.

Using this guide
This guide provides teachers and instructors with:

• an overview of each of the ten EdPy lessons,

• a breakdown of each lesson,

• an overview of each student worksheet and activity sheet,

• the answer key to the student worksheets,

• a student worksheet tracking chart and completion certificate, and

• additional supporting information per lesson, as required.

This guide is designed to complement the student worksheets and activity sheets set,

which comprise the bulk of the EdPy lessons.

Student worksheets

The student worksheets are designed to allow for independent learning, enabling students

to transition through the lessons at their own pace.

http://www.meetedison.com
http://www.edpyapp.com/
http://www.meetedison.com/robot-programming-software/
http://www.meetedison.com/robot-programming-software/

Page 5

Each of the ten EdPy lessons contains at least one student worksheet. Each worksheet

contains:

• information about the lesson,

• instructions,

• links to any additional resources, and

• questions for students to answer to reinforce and demonstrate learning.

This guide contains an overview of each worksheet in lesson order. An answer key is also

included. It is important to note that while some of the worksheet questions have set

answers, many others do not. Instead, these questions allow for students to describe their

own programs or experiences. In these instances, example answers are provided.

Activity sheets

Some of the lessons also include activity sheets, which provide students with a working

area to quickly test their programs and run experiments.

Answer key

A complete answer key to the student worksheets, including suggestions for marking

student work, is included.

Creative Commons licence attribution details
The EdPy Lesson Plans Set is comprised of the EdPy worksheets, activity sheets, and this

guide. The collection is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.

Activity development: Brenton O’Brien and Sarah Boyd

Instructional design: Kat Kennewell

The EdPy lesson plans have been produced in conjunction with Dr Sarah Boyd from

LoveSTEM.

Dr Sarah Boyd is the Director and founder of LoveSTEM, a company founded in 2016 to

promote a love of STEM – Science, Technology, Engineering and Mathematics. Sarah is a

registered teacher in New South Wales, Australia, and has over 20 years’ experience as a

software engineer. You can find Sarah on Twitter @sarahboydster and learn more about

LoveSTEM at www.loveSTEM.com.au.

http://www.meetedison.com
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.lovestem.com.au/

Page 6

Lesson plan overview
This section provides a high-level overview of the scope and key learning outcomes of the

ten EdPy lesson plans.

Lesson 1: Get familiar and set up

Technology skills – Students familiarize themselves with the programming environment

and learn how to download a program to the robot. Students will:

• set up and become familiar with Edison using barcode programs,

• open the EdPy software application and become familiar with all the
elements in the programming environment,

• review and understand all the elements in the setup code, and

• download a test program.

Lesson 1 contains four parts and has four worksheets:

• Part 1 – Meet Edison (Worksheet 1.1)

• Part 2 – Barcode programming (Worksheet 1.2)

• Part 3 – Meet the EdPy app (Worksheet 1.3)

• Part 4 – Downloading a test program (Worksheet 1.4)

Lesson 2: Robot movement – Driving

Introduction to sequential programming – Students learn how the robot responds to some

basic driving commands and bring together the concepts of time, speed and distance.

Lesson 2 introduces students to the concepts of:

• functions in Python (including input parameters),

• prewritten code,

• expressions in Python,

• the ‘while’ loop and indentation in Python, and

• command completion in EdPy.

Lesson 2 contains five worksheets and one activity sheet:

• Worksheet 2.1 – Drive the robot forward

• Worksheet 2.2 – Drive the robot backwards

• Worksheet 2.3 – Forwards, then backwards

• Worksheet 2.4 – Expressions in Python

• Worksheet 2.5 – Keypad activated driving

• Activity sheet 2.1 (Start/finish line)

http://www.meetedison.com

Page 7

Lesson 3: Robot movement – Turning

Sequential programming and basic geometry – Students explore additional driving

commands which utilize time and geometry to enable greater variety and control in

how they can drive the Edison robot. Lesson 3 introduces the concept of variables in

Python and several new functions. Concepts from previous lessons which are

reinforced in this lesson include:

• functions and input parameters,

• using the Documentation feature of EdPy, and

• using the ‘while’ loop with expressions.

Lesson 3 contains four worksheets and two activity sheets:

• Worksheet 3.1 – Turn right

• Worksheet 3.2 – Turn left 180°

• Worksheet 3.3 – Right turn, then left turn

• Worksheet 3.4 – Mini maze

• Activity sheet 3.1 (Turning)

• Activity sheet 3.2 (Mini maze)

Lesson 4: Get your robot into shape

Loops in Python – Students learn their second control structure in Python, the ‘for’ loop,

and learn about the ‘range()’ function in Python. Lesson 4 has students practice writing

programs using loops which allow them to drive their Edison robot in various shapes.

Lesson 4 contains four worksheets and four activity sheets:

• Worksheet 4.1 – Drive in a square

• Worksheet 4.2 – Use a loop to drive in a square

• Worksheet 4.3 – Drive in a triangle and a hexagon

• Worksheet 4.4 – Challenge! Drive in a circle

• Activity sheet 4.1 (square)

• Activity sheet 4.2 (triangle)

• Activity sheet 4.3 (hexagon)

• Activity sheet 4.4 (circle)

http://www.meetedison.com

Page 8

Lesson 5: Play sounds and dance

Sounds in Edison – Students learn about how sounds work in Edison. Lesson 5 introduces

the concept of strings in Python and reinforces how to use expressions in programs.

Lesson 5 contains five worksheets:

• Worksheet 5.1 – Play tones

• Worksheet 5.2 – Make an alarm

• Worksheet 5.3 – Play a tune

• Worksheet 5.4 – Make your robot dance

• Worksheet 5.5 – Challenge! Dance to music

Lesson 6: Clap sensing

Introduction to inputs (sensors) – Students learn how to make the Edison robot respond to

outside stimulus, using the sound-detecting sensor to register hand claps. Lesson 6

introduces the concept of flowcharts, which students practice reading and designing.

Students also learn how to make their own function in Python.

Lesson 6 contains three worksheets:

• Worksheet 6.1 – Flash the LED in response to a clap

• Worksheet 6.2 – Drive in response to a clap

• Worksheet 6.3 – Design your own function

Lesson 7: Detect obstacle

Introduction to the concepts of obstacle detection and autonomous robotics – Students

learn how to program the Edison robot using the infrared sensors, enabling the robot to

make decisions autonomously in response to obstacles in the robot’s environment.

Students also learn about event based programming and how to use ‘if’ statements in

Python.

Lesson 7 contains one activity sheet and five worksheets:

• Activity sheet 7.1 – Calibrate obstacle detection

• Worksheet 7.1 – Infrared obstacle detection

• Worksheet 7.2 – Detect an obstacle and stop

• Worksheet 7.3 – Obstacle avoidance

• Worksheet 7.4 – Detect an obstacle as an event

• Worksheet 7.5 – Right and left obstacle detection

http://www.meetedison.com

Page 9

Lesson 8: Line sensing and tracking

Industrial-like robotic behavior – Students explore the Edison robot’s line detecting

sensor and learn about basic robot sensing and control similar to that used in advanced

automated factories and warehouses. Students are also introduced to the concepts of

pseudo-code and algorithms.

Lesson 8 contains four worksheets and two activity sheets:

• Worksheet 8.1 – Line tracking sensor

• Worksheet 8.2 – Drive until a black line

• Worksheet 8.3 – Drive inside a border

• Worksheet 8.4 – Follow a line

• Activity sheet 8.1 (test space)

• Activity sheet 8.2 (border)

Lesson 9: Respond to light

Environmental measurement and programming mathematics – Students explore how the

Edison robot’s visible light sensors work, learning how the sensors can be used to

measure light levels with the results being used as variables in a program. Students

expand their knowledge of how to create programs which perform mathematics on input

variables to control the robot’s behavior. They also practice tracing values through a

program.

Lesson 9 contains three worksheets:

• Worksheet 9.1 – Light alarm

• Worksheet 9.2 – Automatic lights

• Worksheet 9.3 – Light following

Lesson 10: Design brief - A vampire robot

Creative thinking and problem solving – Students put the knowledge from all previous

lessons into a practical application as they design their own Vampire robot behaviors.

Students are first introduced to the concepts of a class definition and objects in Python.

They then work through the stages of good program design, including using flowcharts

and pseudo-code, then code and test their programs. This lesson serves as a final project

for the course, asking students to document and reflect on failures they experience as well

as demonstrate their final product.

Lesson 10 contains one project-style worksheet:

• Worksheet 10.1 – Vampire robot

http://www.meetedison.com

Page 10

Lesson 1: Get familiar and set up
Technology skills – Students familiarize themselves with the programming environment

and learn how to download a program to the robot.

There are four parts to lesson 1. During this lesson students will:

1. get to know Edison,

2. use barcodes to program Edison,

3. meet the EdPy app, and

4. check that everything is working by downloading a test program.

Before using Edison with your students, you will need to set up the computers you will be

using with the EdPy app and get the Edison robots ready.

Setting up your computer to work with the EdPy app

Depending on the type of computer you are using, there are a few things you will need to
do to prepare it to be able to work with the EdPy app.

If you are using computers running Windows operating systems, you will need to disable
sound enhancements. Please go to https://www.hamiltonbuhl.com/edison-troubleshoot to
find step-by-step video guides showing you how to disable sound enhancements for
standard Window’s sound enhancements as well as the most common third-party
software programs.

To be able to program Edison, most devices will need the volume turned up to maximum
or 100%. As many devices have built-in safety settings that reduce the volume when an
audio device is connected using the headphone jack, it is also important to double check
that your volume is turned all the way up after plugging in the EdComm programming
cable to your device.

http://www.meetedison.com
https://meetedison.com/edison-robot-support/trouble-shooting/#soundenhancements
https://meetedison.com/edison-robot-support/trouble-shooting/#soundenhancements

Page 11

Get Edison ready

To get Edison ready for use, you need to:

1. Open the battery compartment at the back of Edison and remove the EdComm

programming cable.

2. Insert 4 ‘AAA’ batteries. Please refer to the picture to ensure that the batteries are

inserted correctly. Be sure to reclose the battery case by clipping the battery cover

back on.

Please note: Low or flat batteries can cause a range of issues with Edison. For this

reason, please be sure to use fresh, fully charged batteries.

3. To turn Edison on, flip the robot over. Slide the power switch to the ‘on’ position, as

shown in the picture. This will turn Edison on and the red LED lights will start

flashing.

Please note: While Edison will turn off automatically if not used after five minutes,

we recommend you turn the robot off manually when not in use.

Ensure the batteries are in the right way.

Push the switch towards the ‘on’ symbol.

http://www.meetedison.com

Page 12

Lesson 1, part 1: Meet Edison (Worksheet 1.1)
To work with Edison and EdPy, students need to be familiar with their Edison robot.

Worksheet 1.1 teaches students the location of all of Edison’s sensors and the functions of

the three buttons.

Have students review the images in Worksheet 1.1. You may want to have this worksheet

available for students to review throughout the 10 lessons.

Default settings of Edison’s three buttons:

• Record button – 1 press = download program; 3 presses = scan barcode

• Stop button – 1 press = stop program

• Play button – 1 press = run program

Buzzer/clap detector
Record button

Stop button

Play button
Left light sensor

Left infrared LED
Left red LED

Right light sensor
Right infrared LED

Right red LED

Students need to get to know Edison’s sensors and buttons.

http://www.meetedison.com

Page 13

Students should also turn the Edison robot over to learn where the power switch and line

tracking sensor are located on the bottom.

Edison’s line tracking sensor is

made up of two parts: a red LED

light and a light sensor.

The line tracking sensor also

reads special barcodes that

activate pre-installed programs.

Students need to know how to connect

Edison to a computer using the EdComm

cable to be able to download programs. To

connect Edison, plug the headphone jack

into the headphone socket on your

computer. The other end of the EdComm

cable connects to your Edison robot as

shown.

Line tracking sensor
Power switch

Location of Edison’s power switch and line tracking sensor.

The EdComm programming cable.

Have students practice attaching the EdComm

programming cable to Edison.

http://www.meetedison.com

Page 14

Lesson 1, part 2: Barcode programming (Worksheet 1.2)
Edison comes with pre-loaded programs which are activated by driving over special

barcodes. Worksheet 1.2 includes four of these barcodes which Edison can scan. Using

these barcodes is a good way to get students excited about robotics and what they will

learn using Edison.

To scan a barcode, place Edison on the right of the barcode and press the record (round)

button three times.

Have the students scan and then run each barcode one at a time. Explain what the

students should do to activate a program once they have scanned the correct barcode.

Describe how each program works and which sensors each program uses.

Clap controlled driving

What to do: Place Edison down on a flat surface and press the play (triangle) button.

Place your hands close to Edison and clap one time. Edison will turn right. Next, try

clapping your hands twice, causing Edison to drive forward about 30cm. Then try tapping

Edison with your finger, first once and then twice, to see what happens.

What’s happening: Edison has a sound sensor and uses it to respond to loud sounds,

such as claps.

Avoid obstacles

What to do: Set up a few obstacles. The obstacles need to be opaque but not too dark

(e.g. not black) and at least as tall as Edison for the robot to detect them. Press the play

(triangle) button and watch Edison approach an obstacle and then turn away to avoid

colliding with it.

What’s happening: The avoid obstacles program uses the Edison robot’s infrared (IR)

light LEDs and IR sensor to detect objects directly in front of the robot. Once the pre-set

program is activated, the Edison robot will drive forward, turning as needed to avoid

obstacles it encounters.

Line tracking

What to do: Either use the thick, dark lines on an EdMat (free download available at

https://hamiltonbuhl.com/robot-activities/edmatdownload) or make a track for Edison to

follow by drawing a dark line approximately 1.5cm (0.6 inches) wide on a white

background. Make sure students start by placing Edison next to the black line, not on top

of it, so that the line tracking sensor is on white. Press the play (triangle) button and

watch Edison follow the line.

What’s happening: The line tracking program uses the Edison robot’s reflected light

sensor to detect differences between dark and light surfaces beneath the robot. Once the

http://www.meetedison.com
https://meetedison.com/robot-activities/#edmatdownload

Page 15

pre-set program is activated, the Edison robot will drive until it finds a dark colored line,

then follow that line. In this program, Edison’s line tracking sensor shines light on the

surface and then measures the amount of light that is reflected back. White reflects a lot of

light, giving a high light level reading while black reflects very little, giving a low light level

reading. Edison adjusts direction according to these light level readings. When Edison is

off the line, it turns right to get on the line. However, when Edison is on the line, it turns left

to get off the line. This is why Edison ‘waddles’ back and forth at the edge of the line.

Follow torch

What to do: You will need a torch or flashlight and a flat surface located away from any

other sources of bright light, such as sunlight or overhead fluorescents. Press the play

button and aim the torch at Edison. Once Edison ‘sees’ the bright source of light, the robot

will drive towards it. By moving the torch, you can control where Edison drives.

What’s happening: Edison’s two light sensors at the front left and right take light readings

and the level of these reading are compared to each other. If the level of light on the right

sensor is higher than the left sensor, then Edson’s left motor is driven forward, turning

Edison right, towards the light. This movement will continue until the level of light is greater

on the left sensor. At that time, the left motor will stop, and the right motor will be driven

forward, driving Edison, once again towards the light.

This is one of Edison’s most interesting programs because it mimics the behavior we see
in some flying insects, such as moths swarming around a bright light at night. This type of

behavior is called ‘phototropism’ and is also found in plants that grow towards the sun.

As a lesson extension, ask your students ‘Does this behavior remind you of anything?’ and
discuss phototropism and animalistic behaviors in robotics.

http://www.meetedison.com

Page 16

Lesson 1, part 3: Meet the EdPy app (Worksheet 1.3)
Having gained familiarity with Edison and seen what Edison can do by using the barcodes,

students will be excited and motivated to start using the EdPy app. To access the EdPy

app, open a browser and go to www.edpyapp.com. We recommend using Chrome for best

results.

Worksheet 1.3 introduces students to what the EdPy app looks like and has them work

through test programs to become familiar with the app. Encourage your students to play

around with the EdPy app interface, opening example programs, searching through the

documentation window and noticing how the line help text works.

You may also want to explain the various sections of the app to your students:

Programming area

This is where you type the Python code to control the Edison robot.

Documentation

In this window, you can search the documentation about Python functions that can be

used in EdPy. Here you can find explanations of all the available commands including

example code.

Setup code

Programming area

Compiler Output
Line Help

Example programs

Recently opened programs Check Code Program

Documentation

http://www.meetedison.com
http://www.edpyapp.com/

Page 17

Recently Opened

This window contains a list of recently opened programs. Clicking on these will re-open the

program in the programming area.

Examples

This window contains a list of example programs which you can select and open in the

programming area. The example programs explain how to use common functions of the

Edison robot, including some to the functions students encountered with the barcode

programs.

Check Code

When the ‘Check Code’ button is clicked, the code in the programming area is checked for

errors. If errors are detected, a message will appear in the ‘Compiler Output’ window at the

bottom of the screen providing details on the errors.

Program

When the ‘Program’ button is clicked, the current program is downloaded to the Edison

robot. Make sure the Edison robot is ready for the code by connecting the cable, turning

the volume up to full and pressing Edison’s round button one time.

Compiler Output

When EdPy translates the written code into commands readable by the Edison robot, this

is called ‘compiling the code.’ If errors are detected when you click ‘Check Code,’ they will

be displayed in the compiler output section. If there are no errors detected, this section will

display a message which reads: ‘There are no errors in your code.’

Line Help

The line help is a guide to use while programming which shows users what each of the

Python commands do. When you select a line of code in the programming area with your

mouse cursor, the ‘line help’ window will display a plain-English description of the

command being highlighted by your cursor. This description is a ‘translation’ of the Python

code into English.

Setup code

All Edison programs must contain the

setup code that you see every time you

open the EdPy app. This image is the

setup code for a V2.0 Edison robot:

http://www.meetedison.com

Page 18

Review and discuss the following points about the setup code with your students:

• Line 2 of the setup code starts with a ‘#’ (hash) character. When a line starts with

this character, it is called a ‘comment line.’ Any characters that come after the ‘#’

are ignored by the compiler. The text following after the # is used to document code

so that other people can understand the program. Line 11 contains another

comment line which will also be ignored by the EdPy compiler.

• Line 4 contains the ‘import’ command. This tells Python to ‘import’ another library of

pre-written Python code. In line 4 of the setup, we are importing all the built-in

Edison Python commands, in other words, all the EdPy commands. These built-in

commands will all start with the prefix ‘Ed.’ and allow us to program the Edison

robot in Python.

• Line 6 defines the built-in Edison variable that relates to the version of Edison you

are using. Variables in Python are reserved memory locations for storing values.

If you are using V2.0 version of the Edison, this line should be:

Ed.EdisonVersion = Ed.V2

If you are using version 1 of the Edison, you should change this line to:

Ed.EdisonVersion = Ed.V1

Please note: selecting the correct version of Edison when you launch EdPy will

automatically set these values.

• Look at the character sets in the sample code that are written in all capitals, such as

V1, V2, CM and INCH. In Python, the convention is that any variable name written

in all caps is a ‘constant’. Constants are variables that maintain the same value

everywhere in your program and are used as a reference point throughout the

program. EdPy has a range of helpful built-in constants.

• Line 8 defines the built-in Edison variable that relates to the distance units used by

the robot: inches, cm or time (in seconds).

If you want to use inches, you should change this line to:

Ed.DistanceUnits = Ed.INCH

If you are using an Edison V1, then you must select Ed.TIME for the

distance units:

Ed.DistanceUnits = Ed.TIME

• Line 9 defines the built-in Edison variable which relates to how fast or slow Edison

plays a musical tune. See the documentation section for the different speeds that

can be set.

http://www.meetedison.com

Page 19

Lesson 1, part 4: Download a test program (Worksheet 1.4)
Once the students are familiar with the EdPy app, they should experiment with a program.

Have the students open the test program by selecting ‘Test_Program’ from the ‘Examples’

window on the left. The test program looks like this:

Explore the ‘Test_Program’

Explain to the students that this is an example of what a program in Python looks like. Use

the Test program to discuss some of the basic points they will need to know to use EdPy:

• In EdPy, Edison looks at each line of code one at a time and does what the line

says. Blank lines and comment lines are ignored.

o Remind students they can learn more about what a line does by selecting it

and reading the Line Help window text.

• Each line in this program is calling on the built-in Edison commands.

o Remind students that they can explore each of the commands by searching

for that command in the Documentation window.

• In Python, commands may have parameters that are passed into them to specify

inputs for the command to use. Look at some of the commands in the program and

examine the associated parameters.

Input parameter

http://www.meetedison.com

Page 20

o Example 1: the Ed.RightLed() command takes one input which tells the right

LED whether it should turn on (Ed.ON) or off (Ed.OFF).

o Example 2: The Ed.PlayBeep() command has no input parameters.

o Example 3: In the Ed.TimeWait() command there are 2 input parameters –

the first for the number of seconds or milliseconds to wait, and the second

parameter for the unit of time (milliseconds or seconds).

Once you have looked through the Test program, have the students download the

program to their robots.

Download the program

Explain to the students that the program goes from the computer through the EdComm

cable to the Edison robot. The EdComm cable converts the electrical signal of sounds

from the headphone jack into light, which the robot receives, converts to an electrical

signal and stores as a program in its memory.

To download a program to Edison, connect the EdComm cable to the headphone socket

on the computer and turn up the volume to full. As some devices have safety features

which turn the volume down when a listening device is detected, instruct your students to

always confirm the volume is at full after they have plugged in the EdComm cable.

Plug the other end of the EdComm cable into Edison as shown.

To download the test program, follow these steps:

1. Turn Edison on, then press Edison’s record (round) button once

2. Connect Edison to the computer using the EdComm cable and confirm the

volume is turned up to full

3. Press the ‘Program Edison’ button in the upper right corner of the EdPy app

4. Follow the steps in the pop-up window, then press ‘Program Edison’

While the program is downloading to Edison, a sound like an old dial-up modem can be

heard. When many users in a single location, like in a classroom, are downloading

http://www.meetedison.com

Page 21

programs at the same time, you may experience slower internet speeds. This can cause

the program to take longer to generate the ‘program Edison’ pop-up box and for the

program to download to Edison. With a very slow connection, you may need to try again.

Press the stop (square) button on Edison, then press the record (round) button one time.

Restart the download by clicking on the ‘Program Edison’ button in the top-right corner of

the app.

Once the program has downloaded correctly and made the ‘success’ sound' (https://
www.hamiltonbuhl.com/edison-troubleshoot/#sound), you can unplug the EdComm

cable.

Have students press the play (triangle) button on Edison one time. This will cause

Edison to run the test program, making Edison spin right and left while flashing its lights

and beeping.

Remind the students that the robot reads each line of the program line by line. Look at the

program again, watching Edison play the program. Discuss where you can see Edison

‘play’ each line.

http://www.meetedison.com
https://meetedison.com/edison-robot-support/trouble-shooting/#success-fail-sounds

Page 22

Lesson 2: Robot movement – driving
Introduction to sequential programming – Students learn how the Edison robot responds to

Python commands in sequence order and bring together the concepts of time, speed and

distance.

In this lesson, students use the built-in drive functions in the EdPy app to drive the robot

forward and backwards set distances.

Students work through four main programming tasks in lesson 2, using five worksheets

and one activity sheet:

• Worksheet 2.1 – Drive the robot forward

• Worksheet 2.2 – Drive the robot backwards

• Worksheet 2.3 – Forwards, then backwards

• Worksheet 2.4 – Expressions in Python

• Worksheet 2.5 – Keypad activated driving

• Activity sheet 2.1 (Start/finish line)

Lesson 2, program 1 – Drive the robot forward (Worksheet 2.1)
Students write a program that drives the robot forward a set distance from a ‘start’ point to

a ‘stop’ point.

Worksheet 2.1 walks students through writing the program, exposing them to functions,

input parameters and some of the help features of EdPy.

Tips and tricks:

• Instruct students to either use the start and finish lines on activity sheet 2.1 or to

create start and stop markers using colored tape on a desk or the floor.

• Student programs must have Edison stop driving before crossing over the stop/

finish marker.

Lesson 2, program 2 – Drive the robot backwards (Worksheet 2.2)
Students are introduced to the idea that there are multiple ways to write a program which

will give the same result. Students explore two different ways to write a program that will

drive the robot backwards a set distance from a ‘start’ point to a ‘stop’ point.

Worksheet 2.2 walks students through writing a program, reinforcing the idea of using

functions, input parameters and some of the help features of EdPy. Students then

experiment with using a constant as an input parameter.

Tips and tricks:

http://www.meetedison.com

Page 23

• Instruct students to either use the start and finish lines on activity sheet 2.1 or to

create start and stop markers using colored tape on a desk or the floor.

• Student programs must have Edison stop driving before crossing over the stop/

finish marker.

Lesson 2, program 3 – Forward, then backwards (Worksheet 2.3)
Students work more with sequential programming, creating a program with multiple steps

on multiple lines of code. Students write a program that will drive the robot forward, then

backwards a set distance from a start marker to a stop marker, and then back again.

Worksheet 2.3 walks students through writing the program, reinforcing the basic

programming steps for using Edison and EdPy. Students practice using a constant as an

input parameter.

Tips and tricks:

• Instruct students to either use the start and finish lines on activity sheet 2.1 or to

create start and stop markers using colored tape on a desk or the floor.

• Student programs must have Edison stop driving before crossing over the stop/

finish marker.

Lesson 2, offline activity – Expressions in Python (Worksheet 2.4)
Students are introduced to:

• the core concept of expressions,

• how expressions are written in Python,

• how expressions operate, and

• why expressions are used in programming.

Worksheet 2.4 explains how expressions work, are written and resolved in Python. The

students practice reading expressions for meaning and resolving expressions to either

‘true’ or ‘false.’

Lesson 2, program 4 – Keypad activated driving (Worksheet 2.5)
Students are introduced to:

• the while loop in Python,

• the importance of indentation in Python, and

• the Ed.ReadKeyPad() function.

http://www.meetedison.com

Page 24

Worksheet 2.5 demonstrates how expressions are used inside a ‘while’ loop in EdPy. The

students program their Edison robot to drive forward when the triangle or round button is

pressed by using a ‘while’ loop and expressions. They will then write their own version of

the program, adapting it so that Edison will drive forward when the triangle or round button

is pressed, then drive backwards when the triangle or round button is pressed again.

Tips and tricks:

• Python is very particular about white space (e.g. blank characters) inside code

lines. In Python syntax, using the tab key to indent a line of code and using the

space key to indent it the same amount are not equivalent. Students should use the

tab key.

http://www.meetedison.com

Page 25

Lesson 3: Robot movement – turning
Sequential programming and basic geometry – Students explore additional driving

commands, learning how the robot responds to time and geometry.

In this lesson, students use a range of drive functions to turn the robot at different angles

(90°, 180° and 270°) and then combine multiple functions to create a driving sequence.

Students work through four main programming tasks in lesson 3, using four worksheets

and two activity sheets:

• Worksheet 3.1 – Turn right

• Worksheet 3.2 – Turn left 180°

• Worksheet 3.3 – Right turn, then left turn

• Worksheet 3.4 – Mini maze

• Activity sheet 3.1 (Turning)

• Activity sheet 3.2 (Mini maze)

Lesson 3, program 1 – Turn right (Worksheet 3.1)
Students are introduced to variables in Python and learn how to use variables to make

Edison turn a set number of degrees.

Worksheet 3.1 explains what variables are, why they are useful and how to write them in

Python. The students work through a program which uses a variable to turn the robot right

90 degrees. They then expand their program to use the variable a second time, turning the

robot back. Students also practice assigning values to the variable and explore variable

naming conventions in Python.

Tips and tricks:

• Instruct students to either use activity sheet 3.1 or to create start and stop angle

markers using colored tape on a desk or the floor.

Lesson 3, program 2 – Turn left 180° (Worksheet 3.2)
Students practice controlled driving by creating two different programs to turn their Edison

left exactly 180 degrees.

Worksheet 3.2 has students write a program making their Edison turn left 180 degrees two

different ways. The first programming task reinforces using variables in a program. The

second programming task also challenges students to measure and calculate what

variable they need to use.

Tips and tricks:

• Instruct students to either use activity sheet 3.1 or to create start and stop angle

markers using colored tape on a desk or the floor.

http://www.meetedison.com

Page 26

• Due to minor mechanical differences in the motors and encoders inside different

Edison robots, some robots may not turn to exactly 180 degrees when given the

input of 180. Encourage students to try different values around 180 (e.g. 178 or

183) to find the input that works best for their Edison.

• If students are using either CM or INCH, encourage students to calculate the

variable value needed when using the Ed.DriveRightMotor() command. This can be

done by measuring the width of Edison’s wheelbase and using that as the radius of

the half circle they need to drive.

Lesson 3, program 3 – Right turn, then left turn (Worksheet 3.3)
Students create a program using multiple elements they have learned previously; including

the ‘while’ loop, expressions and variables; to get their robot to turn first right following one

key press, then left following a second key press.

Worksheet 3.3 walks students through a program using the Ed.ReadKeyPad() command

and a while loop. Students then write an expanded program containing a second while

loop, so that their robot will turn right exactly 90° when the triangle button is pressed once,

then turn left exactly 270° when the triangle button is pressed a second time.

Tips and tricks:

• Instruct students to either use activity sheet 3.1 or to create start and stop angle

markers using colored tape on a desk or the floor.

• Due to minor mechanical differences in the motors and encoders inside different

Edison robots, some robots may not turn to exactly the degrees entered. Encourage

students to try different values around the degree value to find the input that works

best for their Edison.

• Remind students to put Ed.ReadKeyPad() into the line above the ‘while’ loop to

clear any previous key presses before the loop.

• Remind students they can do math with expressions, for example,

3*degreesToTurn.

Lesson 3, program 4 – Mini maze (Worksheet 3.4)
Students create a program using multiple functions applying the concepts they have

learned in the last two lessons to get their robot to drive through a maze.

Worksheet 3.4 challenges students to write and test their own program that will allow

Edison to navigate a maze. The worksheet includes two optional challenges: 1) to race

another student through the maze and 2) to design their own, more challenging maze for

either themselves or a partner.

http://www.meetedison.com

Page 27

Tips and tricks:

• Instruct students to either use activity sheet 3.2 or to create a maze using colored
tape on a desk or the floor.

• Remind students that due to minor mechanical differences in the motors and

encoders inside different Edison robots, some robots may not turn to exactly the

degrees entered. Encourage students to experiment and try different values around

the degree value to find the input that works best for their Edison.

• Challenge 1 requires students mainly to adjust their program’s time inputs. Remind

students of the parameters for success to avoid ‘cheating’. Students should use the

same maze as each other for this challenge.

• Challenge 2 asks students to design their own, more complicated maze and write a

program for Edison to navigate that maze. Alternatively, have students design new

mazes and exchange them with each other, writing programs to complete their

partner’s maze.

Mini maze program:

Key code elements:

Ed.Drive(), Ed.SPIN_RIGHT, Ed.SPIN_LEFT, Ed.FORWARD, (variable)

Example code:

degreesToTurn = 90

Ed.Drive(Ed.FORWARD, Ed.SPEED_5, 13)

Ed.Drive(Ed.SPIN_LEFT, Ed.SPEED_5, degreesToTurn)

Ed.Drive(Ed.FORWARD, Ed.SPEED_5,3)

Ed.Drive(Ed.SPIN_RIGHT, Ed.SPEED_5, degreesToTurn)

Ed.Drive(Ed.FORWARD, Ed.SPEED_5, 15)

http://www.meetedison.com

Page 28

Lesson 4: Get your robot into shape
Loops in Python – Students learn their second control structure in Python, the ‘for’ loop,

and learn about the ‘range()’ function in Python.

In this lesson, students practice writing programs using loops as well as the other

programming structures they have learned in previous lessons, allowing them to drive their

Edison robot in various shapes (a square, a triangle, a hexagon, and a circle).

Students work through four main programming tasks in lesson 4, using four worksheets

and four activity sheets:

• Worksheet 4.1 – Drive in a square

• Worksheet 4.2 – Use a loop to drive in a square

• Worksheet 4.3 – Drive in a triangle and a hexagon

• Worksheet 4.4 – Challenge! Drive in a circle

• Activity sheet 4.1 (square)

• Activity sheet 4.2 (triangle)

• Activity sheet 4.3 (hexagon)

• Activity sheet 4.4 (circle)

Lesson 4, program 1– Drive in a square (Worksheet 4.1)
Students write a program to make their robot drive in a square, drawing on the skills from

previous lessons.

Worksheet 4.1 instructs students to write a program which will make their Edison robot

drive in a square, reinforcing the learning they have completed in lessons 2 and 3.

Tips and tricks:

• Instruct students to either use activity sheet 4.1 or to create a larger square using

colored tape on a desk or the floor.

Lesson 4, program 2 – Use a loop to drive in a square (Worksheet 4.2)
Students learn about the ‘for’ loop and ‘range()’ function in Python.

Worksheet 4.2 introduces students to both the ‘for’ loop and ‘range()’ function in Python.

Students then use both the ‘for’ loop and ‘range()’ function to write a new program which

will make their Edison robot drive in a square to see how using these commands allows

them to write the program more efficiently, using less code.

Tips and tricks:

• Instruct students to either use activity sheet 4.1 or to create a larger square using

colored tape on a desk or the floor.

http://www.meetedison.com

Page 29

Lesson 4, program 3 – Drive in a triangle and a hexagon (Worksheet
4.3)
Students practice using the ‘for’ loop and ‘range()’ function in Python.

Worksheet 4.3 has students write two new programs using the ‘for’ loop and ‘range()’

function in order to drive in the shape of a triangle and then in the shape of a hexagon.

Students are asked to think about the relationship between the shape they are driving and

the parameter they are using in range() to determine the value set.

Tips and tricks:

• Instruct students to either use activity sheets 4.2 and 4.3 or to create larger versions

of the shapes using colored tape on a desk or the floor.

• Remind students that the sum of the interior angles of a triangle is 180° and that the

sum of the interior angles of a hexagon is 720°.

Lesson 4, program 2 – Challenge! Drive in a circle (Worksheet 4.4)
Students are challenged to write a program to make their robot drive in a circle.

Worksheet 4.4 challenges students to program their Edison robot to drive in a circle.

Students must draw on their knowledge of the ‘for’ loop and ‘range()’ function and their

understanding of the relationship between the shape they are driving and the parameter

they are using in range() to determine the value set in order to create a circle.

Tips and tricks:

• Instruct students to either use activity sheet 4.4 or to use a larger existing circle,

such as the base of a wastebasket.
• It may not be possible to drive in a perfect circle, but hint to students that a shape

with thousands of very small sides can closely approximate a circle.

• Discuss with your students the logic behind the following program being able to

make a circle, then test to see if it does:

degreesToTurn = 1

for x in range(360):

 Ed.Drive(Ed.FORWARD, Ed.SPEED_5, 1)

 Ed.Drive(Ed.SPIN_LEFT, Ed.SPEED_5, degreesToTurn)

http://www.meetedison.com

Page 30

Lesson 5: Play sounds and dance
Sounds in Edison – Students learn about how sounds work in Edison.

In this lesson, students are introduced to the concept of strings in Python and apply this

using tune strings in EdPy. Students also practice writing programs which use

expressions, resulting in Boolean datasets (true/false) as well as using the ‘for’ loop.

Students work through five main programming tasks in lesson 5, using five worksheets:

• Worksheet 5.1 – Play tones

• Worksheet 5.2 – Make an alarm

• Worksheet 5.3 – Play a tune

• Worksheet 5.4 – Make your robot dance

• Worksheet 5.5 – Challenge! Dance to music

Lesson 5, program 1– Play tones (Worksheet 5.1)
Students learn about playing musical tones using Edison.

Worksheet 5.1 explains how to use EdPy and Edison to play individual musical notes.

Students then write three short programs to practice playing a musical note and to learn

how to get sounds to play in the background of the rest of the program, or to make the

program wait until the notes have finished playing to continue.

Tips and tricks:

• Review the basic notations used in expressions in Python with students.

• Review how ‘while’ loops work in Python with students.

Lesson 5, program 2 – Make an alarm (Worksheet 5.2)
Students learn more about the PlayTones() function including how to customise the

frequency of notes using variables.

Worksheet 5.2 first walks students through some basics of acoustics that will help them in

creating their own sounds using Edison and EdPy. The first part of the worksheet explains:

• Frequency in acoustics and the base unit for frequency, hertz

• The relationship between frequency and period

• How to convert frequency to period for use in EdPy

Students then program their Edison robots to play an alarm program using a ‘for’ loop with

a range. They will use this program to practice tracing code manually to verify their

understanding of what the program is doing.

http://www.meetedison.com

Page 31

Tips and tricks:

• Students may benefit from a breakout lesson on the science of acoustics, including

how frequency works, is measured and is related to pitch.

• Review indentation in Python and look at how indentation works in nested loops.

Lesson 5, program 3 – Play a tune (Worksheet 5.3)
Students learn how to use the Ed.PlayTune() and Ed.TuneString() functions to play a

known tune using a string.

Worksheet 5.3 introduces strings as inputs and walks students through using a tune string

in EdPy. Students program a simple song, experiment with adjusting the tempo constant in

the Setup code and try modifying the base program to create a truncated version of the

tune.

Tips and tricks:

• Students may benefit from a breakout lesson on reading sheet music.

• Remind students to use the autocomplete feature in the EdPy app to help them as

they program. Explain that autocomplete is a feature used in some software

designed to help the user complete each line of code by using built-in

documentation.

Lesson 5, program 4 – Make your robot dance (Worksheet 5.4)
Students practice using a ‘for’ loop with variables and different drive functions they already

know to make their Edison dance.

Worksheet 5.4 has students program their robot to do a version of the ‘shimmy’ dance

routine using a ‘for’ loop and variables. Students are reminded about comment code and

how to include math in their code.

Tips and tricks:

• Remind students they can use the ‘#’ character to write comment code in their

programs.

• Review ‘for’ loops, proper indentation and using variables.

Lesson 5, program 5– Challenge! Dance to music (Worksheet 5.5)
Students design their own dance routine for their Edison robot, synchronizing it with some

tones or tunes of their own design.

http://www.meetedison.com

Page 32

Worksheet 5.5 has students program their robot so that Edison dances and plays tones at

the same time. Students are then challenged to create their own dance and music

combination, getting Edison to move with the music if they can.

Tips and tricks:

• You may wish to hand out basic sheet music to help students with the creation of

their songs.

http://www.meetedison.com

Page 33

Lesson 6: Clap sensing
Introduction to inputs (sensors) – Students learn how to make the Edison robot respond to

outside stimulus.

In this lesson, students learn about sensors in robots and how a robot can detect outside

stimulus. Using Edison’s sound-detecting sensor to register loud noises, such as hand

claps, students create programs to determine the robot’s response to the outside stimulus.

Lesson 6 also introduces the concept of flowcharts, which students practice reading and

designing, and teaches students how to make their own function in Python.

Students work through three main programming tasks in lesson 6, using three worksheets:

• Worksheet 6.1 – Flash the LED in response to a clap

• Worksheet 6.2 – Drive in response to a clap

• Worksheet 6.3 – Design your own function

Lesson 6, program 1 – Flash the LED in response to a clap (Worksheet
6.1)
Students are introduced to the concept of using data gathered from Edison’s sensors in

their program as a way to influence the robot’s behavior.

Worksheet 6.1 introduces the concept of flowcharts to plan and organize code. Students

see how they can use flowcharts to describe their programs diagrammatically. The

concept of an infinite loop is introduced. Students learn how to write an infinite loop using

the hard-coded condition True. Students then experiment with the program, testing the

sensors’ capabilities and testing the functionality of different elements of the code in their

program.

Tips and tricks:

• Review the basic notations used in expressions in Python with students.

• Review how ‘while’ loops work in Python with students.

• Remind students they can tap their finger on their Edison instead of clapping. This

can be helpful if many students are running the program near one another.

Lesson 6, program 2 – Drive in response to a clap (Worksheet 6.2)
Students incorporate learning from previous lessons to drive their Edison robot in

response to an event (clap) and design their own flowchart to describe their code.

Worksheet 6.2 has students use the ‘Ed.ReadClapSensor()’ function to write two

programs: first a program getting Edison to drive forward when a clap is detected and then

a second program where Edison drives forward, waits for a clap, then drives backwards.

Students also practice creating a flowchart.

http://www.meetedison.com

Page 34

Tips and tricks:

• Remind students the importance of clearing stored data when using a ‘read’

function in a loop.

• Review the basic flowchart shapes.

Lesson 6, program 3 – Design your own function (Worksheet 6.3)
Students learn more about functions in Python, including how to make their own function.

Worksheet 6.3 explores what functions are, how they work and how they are written in

Python. Students learn how to structure a function and practice writing and exercising

functions in their program. Students learn about organizing their code to keep things neat

and easily readable. They then design their own function, working through designing,

coding and testing the function in their own program.

Tips and tricks:

• Remind students the importance of clearing stored data when using a ‘read’

function in a loop.

• Review the basic flowchart shapes.

http://www.meetedison.com

Page 35

Lesson 7: Detect obstacles
Introduction to the concepts of obstacle detection and autonomous robotics – Students

use Edison’s infrared sensors to program the robot to make decisions in response to

obstacles in the robot’s environment.

In this lesson, students learn more about Edison’s infrared sensors and how these sensors

can be used to enable the robot to make decisions in response to obstacles in Edison’s

environment. This serves as an introduction to the concept of autonomous robotics.

Lesson 7 also exposes students to event based programming and how to use ‘if’ and

‘if/else’ statements in Python.

Students work through four main programming tasks in lesson 7 using one activity sheet
and five worksheets:

• Activity sheet 7.1 – Calibrate obstacle detection

• Worksheet 7.1 – Infrared obstacle detection

• Worksheet 7.2 – Detect an obstacle and stop

• Worksheet 7.3 – Obstacle avoidance

• Worksheet 7.4 – Detect an obstacle as an event

• Worksheet 7.5 – Right and left obstacle detection

Lesson 7, offline activity -- Infrared obstacle detection (Worksheet 7.1)
Students become familiar with the Edison robot’s infrared obstacle detection technology

and learn how the robot can detect obstacles in its path.

Worksheet 7.1 introduces students to IR and Edison’s IR obstacle detection system.

Students complete a short offline activity to reinforce their understanding of how Edison

emits IR light and detects reflected IR light.

Tips and tricks:

• It may be beneficial to have a breakout session on the electromagnetic spectrum

and where IR and visible light fall within the spectrum.

• Using different colors to mark their answers of IR light and reflected IR light on the

worksheet will make it easier for students to demonstrate their understanding of the

difference.

Lesson 7, program 1 – Detect an obstacle and stop (Worksheet 7.2)
Students write a program that drives Edison forward until an obstacle is detected in the

robot’s path. The robot then stops, avoiding a collision.

Worksheet 7.2 walks students through the fundamentals of programming Edison to use

the robot’s in-built obstacle detection technology. Students are provided with some basic

http://www.meetedison.com

Page 36

information about what is required of their EdPy program (such as always turning the

obstacle detection beam on) as well as what they need to prepare offline regarding

obstacles and Edison. Students then run a basic obstacle detection program.

Tips and tricks:

• To ensure the best results using obstacle detection, have students calibrate their

Edison using activity sheet 7.1 before beginning this activity. This is especially

important if the obstacle detection is too sensitive or not sensitive enough.

• Remind students that for Edison to be able to detect an obstacle, the obstacles

need to be opaque but not too dark (e.g. not black) and at least as tall as Edison.

Lesson 7, program 2 – Obstacle avoidance (Worksheet 7.3)
Students write a program that drives Edison forward until an obstacle is detected in the

robot’s path. The robot then turns away, avoiding a collision.

Worksheet 7.3 has students program Edison with an obstacle detection program, building

on what they have previously done. Students are then challenged to think about how they

can further change and improve the program, bringing in knowledge from previous

lessons. Students are also introduced to the concept of logical errors in programming and

reminded about syntax errors. They then complete a challenge to identify both syntax and

logical errors in an example program.

Tips and tricks:

• To ensure the best results using obstacle detection, have students calibrate their

Edison using activity sheet 7.1 before beginning this activity. This is especially

important if the obstacle detection is too sensitive or not sensitive enough.

• Remind students that for Edison to be able to detect an obstacle, the obstacles

need to be opaque but not too dark (e.g. not black) and at least as tall as Edison.

• Remind students they must include ‘Ed.ObstacleDetectionBeam(Ed.ON)’ in any

program running obstacle detection.

Lesson 7, program 3 – Detect an obstacle as an event (Worksheet 7.4)
Students use event handling to write an event driven program which makes Edison drive

forward continuously, including an interrupt causing the robot to turn around whenever an

obstacle is detected.

Worksheet 7.4 introduces students to new programming structures including ‘events’ and

‘interrupts’. Students learn how event driven programming works and how to write event

driven programs using event handlers. They then apply this knowledge by writing and

modifying an event driven program for Edison using obstacle detection.

http://www.meetedison.com

Page 37

Tips and tricks:

• To ensure the best results using obstacle detection, have students calibrate their

Edison using activity sheet 7.1 before beginning this activity. This is especially

important if the obstacle detection is too sensitive or not sensitive enough.

• Remind students that for Edison to be able to detect an obstacle, the obstacles

need to be opaque but not too dark (e.g. not black) and at least as tall as Edison.

• Remind students they must include ‘Ed.ObstacleDetectionBeam(Ed.ON)’ in any

program running obstacle detection.

Lesson 7, program 4 – Right and left obstacle detection (Worksheet 7.5)
Students learn about ‘if statements’ including elif (Python syntax for ‘else if’) and else

structures which they use to write three programs, including a program that can respond to

whether there is an obstacle on the left or right of Edison.

Worksheet 7.5 has students work through three programs to progressively introduce the

concept of ‘if statements’ and explain the importance of decision-making in coding.

Students first work with a simple program using a basic if statement which has the Edison

robot beep if an obstacle is detected. The concept of autonomous robotics is presented as

the robot is effectively making decisions without human guidance and is, therefore, acting

as an autonomous robot.

Students then progress to if/else statements working with another short program before

progressing to the if/elif/else Python syntax structure. The third program uses this structure

to create a program which reacts differently depending on where Edison detects an

obstacle.

Tips and tricks:

• To ensure the best results using obstacle detection, have students calibrate their

Edison using activity sheet 7.1 before beginning this activity. This is especially

important if the obstacle detection is too sensitive or not sensitive enough.

• Remind students that for Edison to be able to detect an obstacle, the obstacles

need to be opaque but not too dark (e.g. not black) and at least as tall as Edison.

• Remind students they must include ‘Ed.ObstacleDetectionBeam(Ed.ON)’ in any

program running obstacle detection.

• This lesson can be used to stimulate discussion about autonomous robotics,

artificial intelligence and real-world applications such as robotic cars that have no

driver but use sensors to avoid collisions with people, buildings and other cars.

http://www.meetedison.com

Page 38

Lesson 8: Line sensing and tracking
Industrial-like robotic behavior – Students explore the Edison robot’s line detecting sensor

and learn about basic robot sensing and control similar to that used in advanced

automated factories and warehouses.

In this lesson, students learn more about how the Edison robot’s line detecting sensor

works. They apply knowledge from previous lessons, such as if statements, to programs,

exploring how they can use the line tracking sensor to perform a range of tasks. They also

learn about pseudo code and algorithms.

Students work through three main programming tasks in lesson 8 using four worksheets
and two activity sheets:

• Worksheet 8.1 – Line tracking sensor

• Worksheet 8.2 – Drive until a black line

• Worksheet 8.3 – Drive inside a border

• Worksheet 8.4 – Follow a line

• Activity sheet 8.1 (test space)

• Activity sheet 8.2 (border)

Lesson 8, offline activity – Line tracking sensor (Worksheet 8.1)
Students become familiar with the Edison robot’s line tracking sensor technology and learn

how the robot can detect whether its driving surface is reflective or non-reflective.

Worksheet 8.1 breaks down how the Edison robot’s line tracking sensor works. Students

then use their Edison to determine if white or black surfaces are more reflective. Building

on this, students think through and then test which other colors will be seen as reflective or

non-reflective by the robot. The worksheet also includes a link to the 15-minute-long video

Humans Need Not Apply along with questions designed to get the students to think about

how robots may affect their own lives today and in the future.

Tips and tricks:

• It may be beneficial to have a breakout session on how light reflection and

absorption works, including colored light.

• Have students use activity sheet 8.1. Alternatively, students can use colored paper.

• You may want to use the Humans Need Not Apply video as a partner, group or

class project to stimulate discussion or coordinate a debate. Alternatively, this video

can be used as a homework assignment, requiring students to write up their

reactions and reflections about the information presented.

http://www.meetedison.com

Page 39

Lesson 8, program 1 – Drive until a black line (Worksheet 8.2)
Students write a program that drives the robot forward on a white (reflective) surface until

a black (non-reflective) line is crossed.

Worksheet 8.2 walks students through a simple line tracking program. The idea of

debugging code is expanded on, including examples of how to add lines of code into a

program specifically for debugging purposes. Students then write and test the line tracking

program using black, red, green and blue lines.

Tips and tricks:

• Remind students they must include ‘Ed.LineTrackerLed(Ed.ON)’ in any program

running line tracking.

• Remind students that whenever they use Edison’s line tracking sensor in a

program, they must always start the robot on the white (reflective) surface – never

the black (non-reflective) surface.

• Have students use activity sheet 8.1 for this activity.

Lesson 8, program 2 – Drive inside a border (Worksheet 8.3)
Students write a program that drives the robot forward, using the line tracking sensor to

detect a non-reflective border and turn the robot around, keeping Edison inside the border.

Worksheet 8.3 introduces students to pseudo-code and why it is useful in program design.

Students work through an example of pseudo-code, comparing it to a finished EdPy

program to see how the two correspond. They then write and modify a program that will

keep Edison inside a black border using the robot’s line tracking sensor.

Tips and tricks:

• Remind students they must include ‘Ed.LineTrackerLed(Ed.ON)’ in any program

running line tracking.

• Remind students that whenever they use Edison’s line tracking sensor in a program,

they must always start the robot on the white (reflective) surface – never the black

(non-reflective) surface.

• Have students use activity sheet 8.2 for this activity or create their own border using

a large piece of paper and a black marker or black electrical tape on a white desk or

floor. The lines need to be a very dark color, such as black, and approximately

1.5cm (0.6 inches) wide. Make sure the background is white or another highly

reflective color.

• For a fun class activity, place all the robots inside a large border and run the

program with all the robots at the same time.

http://www.meetedison.com

Page 40

Lesson 8, program 3 – Follow a line (Worksheet 8.4)
Students translate a pseudo-code algorithm for following a black line into their own

Python program.

Worksheet 8.4 introduces the concept of algorithms in programming. Students then

translate an algorithm written in pseudo-code into a program enabling Edison to follow

any black line using the robot’s line tracking sensor.

Tips and tricks:

• Remind students they must include ‘Ed.LineTrackerLed(Ed.ON)’ in any program

running line tracking.

• Remind students that whenever they use Edison’s line tracking sensor in a

program, they must always start the robot on the white (reflective) surface – never

the black (non-reflective) surface.

• Have students use activity sheet 8.2 for this activity or create their own line using a

large piece of paper and a black marker or black electrical tape on a white desk or

floor. The lines need to be a very dark color, such as black, and approximately

1.5cm (0.6 inches) wide. Make sure the background is white or another highly

reflective color.

http://www.meetedison.com

Page 41

Lesson 9: Respond to light
Environmental measurement and programming mathematics – Students utilize the Edison

robot’s visible light sensors to measure light level for use as variables in programs which,

by performing mathematics on these variables, can be used to control the robot’s

behavior.

In this lesson, students learn more about how the Edison robot’s visible light sensors

work. They apply knowledge from previous lessons, such as variables and mathematics

operations, to programs allowing them to use the robot’s light sensors to perform a range

of tasks. They also practice tracing values through a program.

Students work through three main programming tasks in lesson 9 using three worksheets:

• Worksheet 9.1 – Light alarm

• Worksheet 9.2 – Automatic lights

• Worksheet 9.3 – Light following

Lesson 9, program 1 – Light alarm (Worksheet 9.1)
Students write a program that sounds an alarm when the lights in the room are turned on.

Worksheet 9.1 examines how the Edison robot’s light sensors work and how the data that

the sensors produce can be fed into a program. Students then work with a program which

uses the light sensor’s light level reading as a variable to determine the behavior of the

robot. The worksheet reminds students that mathematics can be used inside a program,

in this case with the basic mathematics of using a ‘less than’ (<) comparison.

Tips and tricks:

• It may be helpful to review variables and expressions, including mathematical

notations in expressions in Python.

• If the alarm is sounding immediately after the play button is pushed, try blocking off

the left light sensor with dark paper taped on to the robot (alternatively, a few

colored sticky notes stacked together works very well) before the program is run.

After the play button is pushed, have students wait a bit, then when they are ready

for the alarm to sound, remove the paper. This will trigger the alarm.

Lesson 9, program 2 – Automatic lights (Worksheet 9.2)
Students write a program that drives the robot forward while monitoring light levels. If the

robot drives into a dark area, the front lights are automatically turned on.

Worksheet 9.2 provides the template program and a brief explanation of what is happening

in the program. Students then write and run the program as well as modifications of the

program to see light level monitoring as a fluctuating input variable in action.

http://www.meetedison.com

Page 42

Tips and tricks:

• Reviewing how to define functions in Python may be helpful.

• Creating tunnels for the robots can be turned into a problem-solving design

challenge to see what sorts of materials (overturned books, shoe boxes with cut-

outs, chairs, etc.) work best.

Lesson 9, program 3 – Light following (Worksheet 9.3)
Students write a program that drives the robot towards a bright light, such as that from a

torch/flashlight.

Worksheet 9.3 walks students through the logic of the light following program. As this

program uses more computational mathematics, including subtraction and then a ‘less

than’ (<) comparison, the practice of tracing a program is reintroduced. After students

trace the program to check the flow of the math and logic, they then write and run the

program.

Tips and tricks:

• It may be helpful to review how tracing works in programming.

• This worksheet includes a final set of questions designed to challenge students to

think about the intelligence of both insects and robots as well as the definition of life.

This can make for a good partner, group or class discussion. It can also be

extended into independent research or essay projects.

http://www.meetedison.com

Page 43

Lesson 10: A Vampire robot
Creative thinking and problem-solving – Students are first introduced to the concepts of a

class definition and objects in Python, then put the knowledge from all previous lessons

into a practical application as they design their own Vampire robot behaviors program.

In this lesson, which serves as a final project for the course, students learn about object-

oriented programming and the concepts of a class and objects in Python. They then work

through a programming project, beginning with program design, coding and testing.

Students are asked to capture and reflect on failures they experience during the project

and to demonstrate their understanding of both their own project and the coding structures

they use.

Students work through one main program in lesson 10 using one project-style worksheet:

• Worksheet 10.1 – Vampire robot

Lesson 10, program 1 – Vampire robot (Worksheet 10.1)
Students design a program using a class and objects in Python containing a range of their

own ‘Vampire robot’ behaviors.

Worksheet 10.1 first introduces students to the idea of object-oriented programming and

the concepts of a class definition and objects in Python. Students then use the EdPy app

to write a simple class for a Vampire robot with a __init__ function and two other

functions: one for daytime behavior for the robot and one for night time behavior. Once

they have completed the introduction, students embark on a programming project which

acts as a final project for the course challenging students to program their robot to act like

a vampire (i.e. have different behaviors in the day and the night).

The project contains 5 tasks:

1. Project design, including development of flowcharts and pseudo-code

2. Coding and testing

3. Problem-solving and rework

4. Demonstration of program knowledge

5. Presentation of the final project

Tips and tricks:

• This lesson provides a basic overview of object-oriented programming and using a

class in Python. If you want to have students dig deeper into how class definitions

and objects can be used in Python, you can have them read more at

https://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial/Classes as a

starting point.

• It may be helpful to review key content from previous lessons before students begin

designing their programs.

http://www.meetedison.com
https://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial/Classes

Page 44

• This lesson may take multiple lesson sessions. You may wish to assign elements of

this lesson as a homework exercise.

• Encourage students to use multiple robot sensors in their program and different

programming structures, such as event handlers.

• Encourage students to set up different Vampire objects with different input

parameters.

• If students are struggling with the idea of a single Edison robot being multiple

Vampires (e.g. multiple Vampire objects), change the explanation slightly. Rename

input parameter ‘age’ to something like ‘temperamentValue’. Then, rather than

giving the Vampire objects names such as ‘Dracula’, think of the various objects as

emotions or statuses. For example, ‘shy’, ‘sleepy’ ‘happy’ or ‘noisy’. This way, a

single Edison robot is only one Vampire, but with a variety of Vampire tendency

sets.

• If you want to more strictly define what the students’ final programs must do,

consider assigning specific requirements or tasks that the programs must adhere

to/achieve. These can also serve as suggestions to help students struggling to

come up with ideas.

• The final task, demonstrating their program and talking through their process, can

make for a good partner, group or class presentation. Alternatively, turn the project

into a multimedia assignment where students write up their project and create a

video of their Edison performing their program.

http://www.meetedison.com

Page 45

Answer key

Using the answer key

The EdPy lesson plans answer key contains the answers and marking guidance to all

questions in the student worksheets.

ID number

The ID number identifies to which lesson, worksheet and question the answer relates.

Example: Lesson 1, worksheet 1.2, questions 3 is written as L1-W1.2_Q3

Answer type

The answer type identifies what style of response the question has asked students to

provide. There are three possible answer types:

• Exact input (EI): a question which has an exact solution which the student must

enter.

• Result code (RC): a question which asks students to capture the code they have as

a result of their programming, where a variety of code solutions are possible.

• Result input (RI): a question which asks students to capture their experiences or

outcomes as a result of their experimentation and programming, where a variety of

responses are possible.

Answer

The answer, or elements which should be contained in the answer, is given along with

sample answers where applicable. Student work can be marked against this guide, as

follows:

• Exact input (EI): The correct solution to the question is given.

• Result code (RC): Key functions or code elements which should be in the students’

code are noted. A sample code solution is also provided.

• Result input (RI): Keywords or key ideas which should be included in the students’

answers are noted, where applicable. A sample answer, or notes for marking, is

also provided.

http://www.meetedison.com

Page 46

Answer key: lesson 1

ID number
Answer

Type
Answer

L1-W1.2_Q1
(Clap controlled
driving)

RI Keywords:
clap, two claps, drive forwards, turn

Sample answer:
Edison turns after one clap is detected and drives forward
after it detects two claps.

L1-W1.2_Q2
(Avoid
obstacles)

RI Keywords:
drive, obstacle, sense/see/detect, turn

Sample answer:
Edison drives forward until an obstacle is detected, then
Edison turns away from the obstacle before driving forwards
again.

L1-W1.2_Q3
(Line tracking)

RI Keywords:
line, reflective/white, non-reflective/black, drive/follow

Sample answer:
Edison turns away from the line while on a non-reflective
surface and towards it while on a reflective surface. This
causes Edison to wiggle while driving along the line.

L1-W1.2_Q4
(Follow torch)

RI Keywords:
turn, left, right, light/light level, drive/follow

Sample answer:
Edison follows the bright torchlight, always turning towards
the side that is sensing the highest light level.

L1-W1.3_Q1 EI Ed.EdisonVersion = Ed.V1

L1-W1.3_Q2.1 EI 0

L1-W1.3_Q2.2 EI 2

L1-W1.3_Q2.3 EI 1

L1-W1.3_Q2.4 EI 3

L1-W1.3_Q3 EI Ed.DistanceUnits = Ed.INCH

L1-W1.3_Q4 EI Compiler Output window

L1-W1.4_Q1 RI Keywords:
Turn/turned, left, right, beep/beeping, lights/LEDs

Sample answer:
Edison turned left and right while beeping and flashing the
LEDs on and off.

L1-W1.4_Q2 RI Keywords:
One line at a time/one-by-one, commands/lines

http://www.meetedison.com

Page 47

Sample answer:
Edison followed the Python commands one at a time, line by
line, working from the top of the code to the bottom, skipping
blank lines and comment lines. That is why Edison turned to
the right first because it is first in the code.

L1-W1.4_Q3 RI Keywords:
Sound/.wav file, EdComm cable, download/downloaded

Sample answer:
The program is converted into a sound file and downloaded
to Edison through the EdComm cable.

http://www.meetedison.com

Page 48

Answer key: lesson 2

ID number
Answer

Type
Answer

L2-W2.1_Q1 RI Ed.CM or Ed.INCH or Ed.TIME

L2-W2.1_Q2 RI Answer assumes activity sheet 2.1 was used

~16 cm

OR

~6 Inches

OR

~1100 milliseconds if Speed = 1
~900 milliseconds if Speed = 2
~800 milliseconds if Speed = 3
~700 milliseconds if Speed = 4
~600 milliseconds if Speed = 5
~550 milliseconds if Speed = 6
~500 milliseconds if Speed = 7
~450 milliseconds if Speed = 8
~440 milliseconds if Speed = 9
~400 milliseconds if Speed = 10

L2-W2.1_Q3 RI Keywords:
Fast, accuracy, drop/lower/reduce, time to stop

Sample answer:
At speed 10 Edison is driving fast, this causes Edison to
take longer to stop, and lowers Edison’s accuracy.

L2-W2.2_Q1 RI Answer assumes activity sheet 2.1 was used

~550-600 milliseconds

L2-W2.2_Q2.1
(fastest)

RI Answer assumes activity sheet 2.1 was used

~400-450

L2-W2.2_Q2.2
(slowest)

RI Answer assumes activity sheet 2.1 was used

~1000-1100

L2-W2.3_Q1 RI Answer assumes activity sheet 2.1 was used
Both ‘forward’ and ‘backwards’ should have the same
number.

~16 cm

OR

http://www.meetedison.com

Page 49

~6 Inches

OR

~1100 milliseconds if Speed = 1
~900 milliseconds if Speed = 2
~800 milliseconds if Speed = 3
~700 milliseconds if Speed = 4
~600 milliseconds if Speed = 5
~550 milliseconds if Speed = 6
~500 milliseconds if Speed = 7
~450 milliseconds if Speed = 8
~440 milliseconds if Speed = 9
~400 milliseconds if Speed = 10

L2-W2.3_Q2 RC Key functions:
Ed.Drive(),Ed.TimeWait()

Sample code:
NOTE: inputs to time wait function may vary slightly

Ed.Drive(Ed.FORWARD, Ed.SPEED_6,
Ed.DISTANCE_UNLIMITED)
Ed.TimeWait(560, Ed.TIME_MILLISECONDS)
Ed.Drive(Ed.STOP, Ed.SPEED_6, 2)
Ed.Drive(Ed.BACKWARD, Ed.SPEED_6,
Ed.DISTANCE_UNLIMITED)
Ed.TimeWait(560, Ed.TIME_MILLISECONDS)
Ed.Drive(Ed.STOP, Ed.SPEED_6, 2)

L2-W2.4_Q1 EI Is 2*2 the same as 4?
True

L2-W2.4_Q2 EI Is 2 greater than or equal to 4?
False

L2-W2.4_Q3 EI Is 2 + 2 not equal to 4?
False

L2-W2.4_Q4 EI Is 2-1 less than 4-1?
False

L2-W2.5_Q1 RI Keywords:
Drive/drives/drove, forwards,

Sample answer:
Edison drove forward after either button was pressed.

L2-W2.5_Q2 RI Keywords:
Stops, standby mode/lights flashing

Sample answer:
The program just stops without Edison driving and Edison
goes back to standby mode. This is because the square

http://www.meetedison.com

Page 50

button always stops whatever program is running and puts
Edison back into standby mode.

L2-W2.5_Q3 RC Key code elements:
Ed.Drive(),while, pass,
Ed.ReadKeypad()==Ed.KEYPAD_NONE, Ed.BACKWARD

Sample code:
Ed.ReadKeypad()
while Ed.ReadKeypad()==Ed.KEYPAD_NONE:
 pass
Ed.Drive(Ed.FORWARD, Ed.SPEED_6, 8)
while Ed.ReadKeypad()==Ed.KEYPAD_NONE:
 pass
Ed.Drive(Ed.BACKWARD, Ed.SPEED_6, 8)

http://www.meetedison.com

Page 51

Answer key: lesson 3

ID number
Answer

Type
Answer

L3-W3.1_Q1 RI Keywords:
Turn/turns, 90 degrees/right angle, degreesToTurn, variable,
assign(ed) value

Sample answer:
Edison turns right 90 degrees. It does this because the
distance input of the drive function is set to the variable
degreesToTurn with the assigned value = 90.

L3-W3.1_Q2 RI Keywords:
Turn/turns, 90 degrees/right angle, back/left,
degreesToTurn, variable

Sample answer:
Edison turns right 90 degrees to the right, then turns back
left 90 degrees. This is because the distance input of the
drive function in both lines is set to the variable
degreesToTurn with the assigned value = 90.

L3-W3.1_Q3 RI/RC Sample answer:
Line 12
degreesToTurn = 180

L3-W3.1_Q4 RI Key idea:
Any variable name containing special characters anywhere
in the name or containing numbers at the start of the name.

Examples:
degre#esToTurn
degree$ToTurn
degreesToTurn!
2degreesToTurn

L3-W3.2_Q1 RI Sample answer:
Ed.SPIN_LEFT, Ed.SPEED_4, degreesToTurn = 180

L3-W3.2_Q2 RI Sample answer:

Using CM:
Ed.FORWARDS, Ed.SPEED_4, ~24

Using INCH:
Ed.FORWARDS, Ed.SPEED_4, ~9

Using TIME:
Ed.FORWARDS, Ed.SPEED_4, ~980 milliseconds

L3-W3.3_Q1 RC Key code elements:
While, pass, Ed.ReadKeypad(),!=, Ed.KEYPAD_TRIANGLE,
Ed.Drive()

http://www.meetedison.com

Page 52

Example code:
degreesToTurn = 90
Ed.ReadKeypad()
while Ed.ReadKeypad() != Ed.KEYPAD_TRIANGLE:
 pass
Ed.Drive(Ed.SPIN_RIGHT, Ed.SPEED_6, degreesToTurn)
Ed.ReadKeypad()
while Ed.ReadKeypad() != Ed.KEYPAD_TRIANGLE:
 pass
Ed.Drive(Ed.SPIN_LEFT, Ed.SPEED_6, 3*degreesToTurn)

L3-W3.4_Q1 RI Keywords:
Forwards, left turn, right turn, 90 degrees

Sample answer:
Edison drives forwards, then turns left, drives a short
distance forwards then turns right. Finally, Edison drives
forwards to complete the maze.

L3-W3.4_Q2 RI Note:
Coding is a trial and error based experience. The exact
difficulties noted by the students in this question are less
significant than the acknowledgement and overcoming of
those difficulties.

L3-W3.4_Q3
Challenge 1

RI Opposing student’s name
Winner’s name

L3-W3.4_Q4
Challenge 1

RI Winner’s time through maze

L3-W3.4_Q5
Challenge 2

RI Drawing of maze

http://www.meetedison.com

Page 53

Answer key: lesson 4

ID number
Answer

Type
Answer

L4-W4.1_Q1 RI Key code elements:
Ed.Drive(), Ed.SPIN_LEFT, Ed.FORWARD, (variable)

Example code:
degreesToTurn = 90
Ed.Drive(Ed.FORWARD, Ed.SPEED_5, 15)
Ed.Drive(Ed.SPIN_LEFT, Ed.SPEED_5, degreesToTurn)
Ed.Drive(Ed.FORWARD, Ed.SPEED_5, 15)
Ed.Drive(Ed.SPIN_LEFT, Ed.SPEED_5, degreesToTurn)
Ed.Drive(Ed.FORWARD, Ed.SPEED_5, 15)
Ed.Drive(Ed.SPIN_LEFT, Ed.SPEED_5, degreesToTurn)
Ed.Drive(Ed.FORWARD, Ed.SPEED_5, 15)
Ed.Drive(Ed.SPIN_LEFT, Ed.SPEED_5, degreesToTurn)

L4-W4.1_Q2 EI 8

L4-W4.1_Q3 RI Sample answer:
Yes.
Ed.Drive(Ed.FORWARD, Ed.SPEED_5, 15) was used 4
times.
Ed.Drive(Ed.SPIN_LEFT, Ed.SPEED_5, degreesToTurn)
was used 4 times.

L4-W4.2_Q1 RC Key code elements:
for, range(), Ed.Drive(), Ed.SPIN_LEFT, Ed.FORWARD,
(variable)

Example code:
degreesToTurn = 90
for x in range(4):
 Ed.Drive(Ed.FORWARD, Ed.SPEED_5, 15)
 Ed.Drive(Ed.SPIN_LEFT, Ed.SPEED_5, degreesToTurn)

L4-W4.3_Q1 EI 3

L4-W4.3_Q2 EI 6

L4-W4.3_Q3 RI Key idea:
The number of times the loop executes is equal to the
number of sides of the shape.

Sample answer:
The loop executes the same amount of times as the shape
has sides.

L4-W4.3_Q4 EI 12

L4-W4.4_Q1 RI Will depend on the distance the robot travels and degrees it
turns
Approximate minimum:
20-40

http://www.meetedison.com

Page 54

L4-W4.4_Q2 RI Will depend on the number of loop executions and degrees
it turns
Approximate maximum:
1-2 cm

L4-W4.4_Q3 RI Keywords:
No, turn(ing), small (forward) movements

Sample answer:
No, Edison is actually turning and making small movements
forward each loop, rather than driving in a continuous arch.

http://www.meetedison.com

Page 55

Answer key: lesson 5

ID number
Answer

Type
Answer

L5-W5.1_Q1 RI Keywords:
Waits/finishes(d), music/sound/note, drive(s) forward

Sample answer:
Edison played a note for 2 seconds, then drove forward after
the note finished.

L5-W5.1_Q2 RI Key idea:
The loop is comparing the two sides of the expression to
see if the music is finished. While it is not, the program does
not continue onto the next line.

Sample answer:
The loop is comparing the left side of the expression to the
right to see if the music is finished. Whenever the
expression evaluates to ‘true’ (i.e. the music is not finished)
the program continues to execute the loop. Once it
evaluates to ‘false’, the program continues to the next line.

L5-W5.1_Q3 RI Keywords:
Simultaneously/at the same time/while, music/sound/note,
drive(s) forward

Sample answer:
Edison began to play the note, then started to drive forward
while still playing the note. Edison finished driving before the
note stopped playing.

L5-W5.1_Q4 RI Key idea:
Music plays in the background unless a while loop with
Ed.ReadMusicEnd() is used.

Sample answer:
The second program does not have an Ed.ReadMusicEnd()
function in a ‘while’ loop, so the music plays in the
background, and the program continues with the next lines
of the program.

L5-W5.2_Q1 RI Keywords:
Sounds/tones, frequency/pitch decreasing, period increasing

Sample answer:
Edison makes sounds which decrease in frequency each
loop. This is because the period is increasing each loop.

L5-W5.2_Q2 EI Value of i 1st input parameter to
PlayTone()

0 100

1 200

2 300

http://www.meetedison.com

Page 56

L5-W5.2_Q3 EI 32

L5-W5.2_Q4 EI 3300

L5-W5.2_Q5 EI 33

L5-W5.3_Q1 EI Ed.TEMPO_VERY_FAST
Ed.TEMPO_FAST
Ed.TEMPO_MEDIUM
Ed.TEMPO_SLOW
Ed.TEMPO_VERY_SLOW

L5-W5.3_Q2 EI Ed.TEMPO_VERY_FAST

L5-W5.3_Q3 RI Key idea:
Pairs of characters (a note and duration per pair) must be
removed together for a shorter version of the tune to
continue to play.

Sample answer:
I removed 14 characters from the middle of the tune string
(seven pairs of note/duration), so the tune would skip a
verse.

L5-W5.4_Q1 EI 4

L5-W5.4_Q2 EI 4

L5-W5.4_Q3 RI Key idea:
By having Edison turn a little past the start point before the
loop, Edison swings past the start point in the loop.

Sample answer:
Line 19 of the program makes Edison move off the start line
so that during the loop, Edison will shimmy back and forth
past the start point. That is why the first movement must be
shorter than the rest and why we want it in the program.

L5-W5.5_Q1 RI Note:
Any movement can be accepted here, but bonus points for
movements actually synced to the tune playing!

L5-W5.5_Q2 RI Note:
Any tune can be accepted here.

http://www.meetedison.com

Page 57

Answer key: lesson 6

ID number
Answer

Type
Answer

L6-W6.1_Q1 RI ~1.5m

L6-W6.1_Q2 RI Keywords:
Duration, on and off,

Sample answer:
The TimeWait() functions add a longer duration to the turn
LED on/off action. Without the functions, the LED would turn
on and off too fast to see.

L6-W6.1_Q3 RI Keywords:
Pass, clap detected, loop back/return/flow to

Sample answer:
When the decision of ‘clap detected?’ is ‘no,’ the program
will pass and loop back to the start of the ‘while’ loop, and
ask the question again.

L6-W6.2_Q1 RI Key idea:
The additional read function call clears any previous data
from before the while loop, making sure no previous clap
detections are being stored.

Sample answer:
A read function in a loop may register that event from before
the read function is called in the code. To make sure the
read function in the while loop will not consider any claps
that happen before the while loop, the extra ‘read’ function
call is made to clear any previous claps from before the
loop.

http://www.meetedison.com

Page 58

L6-W6.2_Q2 RI Example flowchart:

L6-W6.3_Q1 RI Sample answer:
def driveInaSquare():
 for i in range(4):

 Ed.Drive(Ed.FORWARD, Ed.SPEED_6, 2)
 Ed.Drive(Ed.SPIN_LEFT, Ed.SPEED_9, 90)

L6-W6.3_Q2 EI driveInaSquare()

L6-W6.3_Q3 RI Sample answer:
No, Edison is turning a little more than a right angle, so all
squares after the first are slightly different.

L6-W6.3_Q4 RI Note:
Any function description using a clap can be accepted here.

L6-W6.3_Q5 RI Note:
Coding is a trial and error based experience. The exact
difficulties noted by the students in this question are less

End

Yes

Drive

backwards

Clear clap

Clap

detected?

No

Start

Drive

forward

Wait

http://www.meetedison.com

Page 59

significant than the acknowledgement and overcoming of
those difficulties.

http://www.meetedison.com

Page 60

Answer key: lesson 7

ID number
Answer

Type
Answer

L7-W7.1_Q1 EI

L7-W7.2_Q1 RI Key idea:
While the program will download, Edison will not detect
obstacles and will continue to drive forward even when
detectable obstacles are in front of the robot because the
obstacle detection beam is not on.

Sample answer:
I checked the code for errors, but it did not show as having
any and I could download the program to Edison. When I hit
play, Edison drove forward straight into a wall. Even when
the robot was up against a wall, it kept trying to drive
forward. This happened because, even though the program
was using obstacle detection, the obstacle detection beam
was never turned on.

L7-W7.2_Q2 RI Note:
Any real-world example is acceptable.

Sample answer:
I have seen this in the reversing sensors on a car.

L7-W7.2_Q3 RI Note:
Any example where obstacle detection would be helpful is
acceptable.

L7-W7.3_Q1 RI Key idea:
Change the program with an improvement of some kind,
such as:

• A loop to repeat functionality

• Lights or sounds to better signal an obstacle has
been detected

• Different conditions to change where an obstacle is
detected from

http://www.meetedison.com

Page 61

Sample answer:
I could add a loop so that the program would be able to
keep detecting and avoiding obstacles.

L7-W7.3_Q2 EI

Error

Line

Error
type

Error description

1 17 syntax
The word ‘while’ is spelt with a
capital W.

2 17 logical

“Ed.ReadObstacleDetection()
!= Ed.OBSTACLE_NONE”
should be
Ed.ReadObstacleDetection() ==
Ed.OBSTACLE_NONE

3 17 syntax
The line needs to end with a
colon (:).

4 18 syntax This line should be indented.

5 19 logical
The last parameter of
Ed.Drive() should be 135, not
145.

L7-W7.4_Q1 RI Keywords:
Drive, forward(s), detect obstacle, spin/turn, away

Sample answer:
Edison starts driving forwards. Then, when an obstacle is
detected, Edison spins away from it before continuing to
drive forward.

L7-W7.4_Q2 EI Key idea:
Lines 19 and 20. This is the ‘avoidObstacle’ function called
when the event occurs.

Sample answer:
Lines 19 and 20. This is because when an obstacle is
detected ahead, the ‘avoidObstacle’ function is called and
the ‘avoidObstacle’ function is defined by line 18 as
containing lines 19 and 20.

L7-W7.4_Q3 EI Key idea:
This read call clears any previously stored data.

Sample answer:
Line 20 is a read call which clears any ‘obstacle detected’
data already stored, resetting the program to look for a new
obstacle.

L7-W7.5_Q1 RI Key idea:
While the robot is acting autonomously, it is not learning and
therefore does not have intelligence (artificial or otherwise).

Sample answer:

http://www.meetedison.com

Page 62

No, Edison is not remembering or learning anything about
the inputs and would crash into the obstacle if any one of
the lines of code was changed.

L7-W7.5_Q2 EI Sample answer:
Obstacle detected ahead: Spin right 180 degrees
Obstacle detected on right: Spin left 90 degrees
Obstacle detected on left: Spin right 90 degrees

http://www.meetedison.com

Page 63

Answer key: lesson 8

ID number
Answer

Type
Answer

L8-W8.1_Q1 EI White

L8-W8.1_Q2 EI Red surface: reflective
Green surface: non-reflective
Blue surface: non-reflective

L8-W8.2_Q1 EI Red

L8-W8.2_Q2 RI Keywords:
Red, reflect/reflective, detect

Sample answer:
Edison uses a red LED in the line tracking sensor to detect a
surface. As red surfaces reflect a lot of red light, Edison
sees a red surface as a reflective surface.

L8-W8.2_Q3 RI Key idea:
Each flag can be assigned a unique indicator so the
program can alert the user when any given flag has been
detected.

Sample answer:
I would assign each flag a different function, so one beep,
one left LED and one right LED. When Edison detects one
of the flags, it uses the output assigned to that type of flag to
signal it has been seen. That would let me know what flags
Edison has seen.

L8-W8.3_Q1 RI Note: as the speed increases, problems will occur. These
begin at approximately speed 5 or speed 6.

Sample answer:
SPEED_6

L8-W8.3_Q2 RI Keywords:
Overshoot/run over, turn, too fast, outside/crosses (the
border)

Sample answer:
If Edison is going too fast, the robot will overshoot the line
before beginning to turn. This results in Edison turning
outside the border.

L8-W8.4_Q1 RI Key idea:
A low speed and distance_unlimited produce the best result.

Sample answer:
The best combination I found was SPEED_2 for speed and
DISTANCE_UNLIMITED for distance.

http://www.meetedison.com

Page 64

L8-W8.4_Q2 RC Key code elements:
Ed.LineTrackerLed(Ed.ON), while True, if, else,
Ed.ReadLineState(), Ed.Drive(), Ed.FORWARD_RIGHT,
Ed.FORWARD_LEFT

Example code:
Ed.LineTrackerLed(Ed.ON)
while True:
 if Ed.ReadLineState() == Ed.LINE_ON_BLACK:

 Ed.Drive(Ed.FORWARD_RIGHT, Ed.SPEED_3,
Ed.DISTANCE_UNLIMITED)
 else:

 Ed.Drive(Ed.FORWARD_LEFT, Ed.SPEED_3,
Ed.DISTANCE_UNLIMITED)

http://www.meetedison.com

Page 65

Answer key: lesson 9

ID number
Answer

Type
Answer

L9-W9.1_Q1 RI Note: any appropriate real-world scenario is acceptable.

Sample answer:
This could be used in a safe. The way it would work is that
when the safe is dark (so when it is closed), the alarm does
nothing. However, when the safe is opened, light is allowed
in, and the alarm would sound.

L9-W9.1_Q2 RI Note: Multiple solutions are possible. The simplest solution
is included below.

Sample answer:
Change line 13 to: while Ed.ReadLeftLightLevel()>100:

L9-W9.2_Q1 RI Key idea:
The higher the value, the lower a reduction of light (e.g.
amount of shade or degree of darkness) is needed to turn
the lights on.

Sample answer:
Edison turns the lights on with only a small amount of
shade.

L9-W9.2_Q2 RI Key idea:
The lower the value, the higher a reduction of light (e.g.
amount of shade or degree of darkness) is needed to turn
the lights on.

Sample answer:
Edison will only turn the lights on when it gets really dark.

L9-W9.3_Q1 EI

Right_Light Left_Light
Expected
behavior

Torch
on
right

200 100
Drive forward

right

Torch
on left

100 200
Drive forward

left

No
torch

100 100
Drive forward

right

L9-W9.3_Q2 RI Key idea:
Edison avoids light from whichever side, driving away from it
instead of towards it.

Sample answer:
Edison turns away from the light, regardless of the side the
light is on. Edison avoids light.

http://www.meetedison.com

Page 66

Answer key: lesson 10

ID number
Answer

Type
Answer

L10 RI Notes:
As this a project-based design challenge, all answers will
vary from student to student.

However, all work in this lesson needs to flow from one
stage to the next. For example, the flowcharts must be
consistent with the pseudo-code, which must, in turn, be
consistent with the actual code.

Coding is a trial and error based experience. The exact
problems identified by the students and the number of
attempts at resolving these issues are less significant
factors than the acknowledgment, creative problem solving
and overcoming of such difficulties.

When complete, students should be able to demonstrate an
accurate understanding of the individual structures they use
in their program as well as the overall logic of the final
program.

http://www.meetedison.com

Student programming achievement chart

Program Stamp Program Stamp

2.1 Drive the robot forward 5.5 Challenge! Dance to music

2.2 Drive the robot backward
6.1 Flash the LED in response to
a clap

2.3 Forward, then backwards 6.2 Drive in response to a clap

2.5 Keypad activated driving 6.3 Design your own function

3.1 Turn right 7.2 Detect an obstacle and stop

3.2 Turn left 180° 7.3 Obstacle avoidance

3.3 Right turn, then left turn
7.4 Detect an obstacle as an
event

3.4 Mini maze
7.5 Right and left obstacle
detection

4.1 Drive in a square 8.2 Drive until a black line

4.2 Use a loop to drive in a
square

8.3 Drive inside a border

4.3 Drive in a triangle and a
hexagon

8.4 Follow a line

4.4 Challenge! Drive in a circle 9.1 Light alarm

5.1 Play tones 9.2 Automatic lights

5.2 Make an alarm 9.3 Light following

5.3 Play a tune 10.1 Vampire robot

5.4 Make your robot dance

http://www.meetedison.com

Congratulations!

This certifies that

has completed the

EdPy robotics and programming course

and in so doing has:

Well done on completing another step of your
robotics and coding adventure!

Date Teacher’s Signature

Student’s name

• Used the Edison robot and EdPy programming language

• Designed, tested and evaluated robot programs

• Developed an understanding of robot programming principals

• Demonstrated an understanding of robot movement

• Utilised robot sensors in an advanced programming language

• Applied acquired knowledge to design solutions to challenges

